Preparation of microporous poly(vinylidene fluoride) membranes via phase inversion in supercritical CO2

نویسندگان

  • Shirong Huang
  • Guozhong Wu
  • Shimou Chen
چکیده

Microporous poly(vinylidene fluoride) (PVDF) membranes were prepared from PVDF/N,N-dimethylacetamide (DMAC) solutions by using upercritical CO2 phase inversion process. As revealed by scanning electron microscope (SEM) and differential scanning calorimeter (DSC), he PVDF membranes exhibit morphological characteristics resulting from both liquid–liquid phase separation and crystallization, i.e., cellular ores surrounded by interlinked PVDF particulate crystallites. This indicates that both types of phase separation processes take place in the upercritical CO2 phase inversion process. The effects of pressure, temperature, and initial polymer concentration on the final membrane structures ere investigated. We also investigated the effect of addition of poly(methyl methacrylate) (PMMA) in the casting dope on the PVDF membrane tructure. The membrane structure changed significantly with the variation of PVDF/PMMA mass ratio in the casting dope as well as polymer oncentration. It was found that the variation of temperature and pressure has a minor influence on the membrane structure. 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poly (Vinylidene Fluride) Membrane Preparation and Characterization: Effects of Mixed Solvents and PEG Molecular Weight

In this study, polyvinylidene fluoride (PVDF) ultrafiltration membranes were prepared via immersion precipitation method using a mixture of two solvents triethyl phosphate (TEP) and dimethylacetamide (DMAc), which had different affinities with the nonsolvent (water). Properties of the prepared membranes were characterized using scanning electron microscope (SEM) and contact angle and membrane p...

متن کامل

Performance of Chemically Modified TiO2-poly (vinylidene fluoride) DCMD for Nutrient Isolation and Its Antifouling Properties

The surface properties of TiO2-PVDF nanocomposite membranes were investigated by incorporating different chemically modified TiO2 nanoparticles into the poly (vinylidene fluoride) (PVDF) matrix. The nanocomposite membranes were prepared via dual coagulation bath diffusion and the induced phase inversion method. The membrane surface morphologies were investigated by using SEM and AFM and related...

متن کامل

Novel PVDF-HFP membranes tailored by supercritical drying ..

The work is based on the drying of PVDF-HFP gels with a procedure assisted by supercritical CO2 to obtain nano-sized porous membranes at high quality/low cost ratio. Poly(vinylidene fluoride) (PVDF) as homopolymer or copolymer with hexafluoropropylene (PVDF-HFP) is a very interesting material largely used in catalytic membrane reactors, chemical and biomedical applications and various filtratio...

متن کامل

Formation of Poly(vinylidene fluoride) Nanofibers Part II: the elaboration of incompatibility in the electrospinning of its solutions

Poly(vinylidene fluoride) (PVDF) fibers with two molecular weights were prepared via electrospinning process. In this process, the concentration of spinning depended drastically on the gelation process. Also, it was experimentally smaller than obtained concentration in the solution entanglement number approach (SENA). Proof of this incompatibility was explained by the properties of PVDF a...

متن کامل

Preparation and characterization of poly(vinylidene fluoride)/nanoclay nanocomposite flat sheet membranes for abrasion resistance.

Membranes with more resilience to abrasive wear are highly desired in water treatment, especially for seawater desalination. Nanocomposite poly(vinylidene fluoride) (PVDF)/nanoclay membranes were prepared by phase inversion and then tested for abrasion resistance. Their material properties were characterized using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA),...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007